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Synthesis of organic molecules carrying a number of functionalities relies on the
conversion of functional groups that display high reactivity, into the target functional
groups. Carbon–hydrogen (C–H) bonds are not classically considered functional groups
within the context of functionalisation. Therefore introduction of a new bond requires the
presence of either a heteroatom on the carbon backbone, a leaving group or
unsaturation.[1]

In the pharmaceutical industry new C–C and C–X (X= C, N, O) bonds are typically made by
cross coupling reactions shown in Scheme 1. Of the methods highlighted, the Heck and
Suzuki reactions are the most popular methods of C–C bond formation in the
pharmaceutical industry, however as can be seen from Scheme 1, both systems require
pre-functionalisation of one of the coupling partners with a halogen, while the other
requires the presence of a terminal alkane (Heck) or a boronic acid (Suzuki).[2] Many
synthetic intermediates do not lend themselves to the formation of terminal unsaturation,
and boronic acids are synthesised from organometallic halides (e.g. Grignard reagents),
which further adds to the complexity of what essentially is the formation of single bond.
Aromatic and heteroaromatic groups are present in more than 75% of marketed
pharmaceuticals, and their functionalisation represents a challenge to the synthetic
community.  The recent developments in cross-coupling reactions catalysed by transition
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metals have enabled a range of methods for introducing aryl functionality, although their
versatility is limited by the availability of aryl halides.[3]

Scheme 1:

Common C-C coupling reactions used in the pharmaceutical industry 
Reproduced from [4] with permission from the Royal Society of Chemistry

The approach for the synthesis of new bonds via pre-functionalisation dictates the
process of synthetic strategy; reactive sites are typically incorporated by a series of
transformations and as a result the starting materials can be very different to the final
product.  Thus, the direct conversion of C–H bonds of organic compounds into desired
functional groups without pre-activation represents a crucial field in green synthetic
chemistry.[5] Such transformations have the potential to provide clean and economic
methods for the preparation of a wide variety of important chemicals directly from
hydrocarbons. Moreover, with such tools in the synthetic chemist’s arsenal, new
opportunities could present themselves that would have a significant impact on synthetic
strategy.[5]  

The challenge to direct C–H functionalisation stems from the high bond dissociation
energy of the C–H bonds of aromatics and alkanes (H–C6H5: 460 kJ/mol; H3C–H: 439
kJ/mol). [6] As such cleavage of these bonds requires high temperatures, the presence of
strong oxidants and acidic or basic additives.[6] Such methods are incompatible for
application with a significant number of functional groups, thus limiting their
applicability. 
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Case studies

This case study was provided by Ryan Gorman during his time at the University of York.

Functionalisation and synthesis of substituted nitrogen containing compounds are one of
the top chemical transformations used in industrial processes and medicinal
chemistry.[1]  In addition to this is the demand for the development of C-H activation
methodologies that negate the need for halogenated starting materials. Nitrogen
containing heterocycles represent an important class of biologically active molecules.
Fused cyclic systems such as oxindoles are common structural motifs in pharmaceuticals
such as the anticancer agent Suntinib and the vasopressin V2 receptor antagonist
Satavaptan (Figure 1).[2]

Figure 1: Pharmaceutical molecules carrying the oxindole motif

3,4-Dihydro-1H-quinolin-2-one ring systems also display potent biological activity and
examples of pharmaceuticals carrying this functionality include the dopamine agonist
aripiprazole, the renal deficiency drug trigolutesin A and meloscine used to treat
meningitis and heart disease.[2] Added to this, is the extensive bioactivity of 1,2,3,4-
tetrahydroquinolines, examples of biologically active molecules include argatroban
(potent thrombin inhibitor) and strychnochromine.[2]

The development of synthetic routes to 1,2,3,4-tetrahydroquinolines has seen
considerable interest by the synthetic organic community; there have been some recent
representative examples for the formation of the C4-C4a bond in particular and these
include a Pd0 catalysed cyclopropane C-H activation,[3][4] Povarov reaction,[5][6][7]
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intramolecular Heck reaction,[8][9] and Ni0 mediated cross coupling[10] among others.
Although these methods involve C-H activation of one of the coupling partners, the
efficient and direct synthesis of 1,2,3,4-tetrahydroquinolines remains a challenge.

In an effort to develop such a method in an efficient and sustainable manner, CHEM21
researchers developed a simple copper(II) catalysed method for the synthesis of
oxindoles, thio-oxindoles, 3,4-dihydro-1H-quinolin-2-ones and 1,2,3,4-
tetrahydroquinolines from linear starting materials  by direct C–H, Ar–H coupling
(Scheme 1). The method boasts of broad scope in substrate and is carried out in open air
using ambient oxygen as the oxidant and thus does not require air and moisture
exclusion. The method is shown to be superior to existing methods including protocols
mediated by manganese catalysts.[2]

Scheme 1: Copper mediated C-H activation for the synthesis of 1,2,3,4-
tetrahydroquinolines (Taylor et al., 2014[2])
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Summary and further reading

C–H bond functionalisation has been a subject of vigorous research over the last 20 years,
and more recently with respect to the development of methods that overcome the
drawbacks highlighted.

Recommended reading:

I. J. S. Fairlamb, Pd-catalysed Cross-couplings for the Pharmaceutical Sector and a Move
to Cutting-edge C–H Bond Functionalization: Is Palladium Simply Too Precious?, in Green
and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century
Pharmaceutical Industry, L. Summerton, H. F. Sneddon, L. C. Jones and J. H. Clark, Royal
Society of Chemistry, Cambridge, UK, 2016, ch. 11, pp. 129-139.

J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Towards mild metal-catalyzed C-H bond
activation, Chem. Soc. Rev., 2011, 40, 4740-4761.

S. Hwan Cho, J. Young Kim, J. Kwak and S. Chang, Recent advances in the transition
metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond
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